ATP reactivation of the rotary axostyle in termite flagellates: effects of dynein ATPase inhibitors

نویسندگان

  • M A Yamin
  • S L Tamm
چکیده

The anterior end or head of a devescovinid flagellate from termites continually rotates in a clockwise direction relative to the rest of the cell. Previous laser microbeam experiments showed that rotational motility is caused by a noncontractile axostyle complex which runs from the head through the cell body and generates torque along its length. We report here success in obtaining glycerinated cell models of the rotary axostyle which, upon addition of ATP, undergo reactivation and exhibit rotational movements similar to those observed in vivo. Reactivation of rotational motility and flagellar beating of the models requires ATP or ADP and is competitively inhibited by nonhydrolyzable ATP analogs (AMP-PNP and ATP-gamma-S). N-ethylmaleimide, p-hydroxymercuribenzoate, and mersalyl acid also blocked reactivation of both the rotary axostyle and flagella. Vanadate and erythro-9-[3-(2-hydroxynonyl)]-adenine (EHNA) selectively inhibited flagellar reactivation without effecting rotational motility. These results, together with previous ultrastructural findings, suggest that the rotary axostyle does not operate by a dynein-based mechanism but may be driven by an actomyosin system with a circular arrangement of interacting elements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation and Reactivation of the Axostyle

The contractile axostyle is a ribbon-shaped organelle present in certain species of flagellates found in the hindgut of wood eating insects. This organelle propagates an undulatory wave whose motion, like flagella and cilia, is related to microtubules. Unlike the axoneme of cilia and flagella, however, the axostyle is composed of singlet microtubules linked together in parallel rows. Axostyles ...

متن کامل

Laser microbeam study of a rotary motor in termite flagellates. Evidence that the axostyle complex generates torque

A rotary motor in a termite flagellate continually turns the anterior part of the cell (head) in a clockwise direction. Previous descriptive observations implicated the noncontractile axostyle, which runs through the cell like a drive shaft, in the motile mechanism. This study demonstrates directly that the axostyle complex generates torque, and describes serval of its dynamic properties. By la...

متن کامل

Rotary movements and fluid membranes in termite flagellates.

We previously described a remarkable type of cell motility that provided direct, visual evidence for the fluid nature of cell membranes. The movement involved continual, unidirectional rotation of one part of a protozoan, including the plasma membrane and cytoplasmic organelles, in relation to a neighbouring part. The cell membrane in the 'shear zone' appeared continuous with that of the rest o...

متن کامل

Different structural states of a microtubule cross-linking molecule, captured by quick-freezing motile axostyles in protozoa

Freeze-etch preparation of the laminated bundles of microtubules in motile axostyles demonstrates that the cross-bridges populating individual layers or laminae are structurally similar to the dynein arms of cilia and flagellae. Also, like dynein, they are extracted by high salt and undergo a change in tilt upon removal of endogenous ATP (while the axostyle as a whole straightens and becomes st...

متن کامل

Structural basis of motility in the microtubular axostyle: implications for cytoplasmic microtubule structure and function

The gross morphology of the protozoan microtubule axostyle of Saccinobaculus ambloaxostylus can now be described in macromolecular detail. The left-handed coil of the axostyle is seen to be dependent upon the asymmetry inherent in the constituent microtubules as expressed by the specific array of linkages between microtubules and by a possible tendency for microtubules to coil into left-handed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 95  شماره 

صفحات  -

تاریخ انتشار 1982